Logo
Flashcard >Data Structures Quiz on big O analysis
Add Flashcard
1/11

Below are the results of running a program with different size inputs. What is the most likely running time as a function of N

N Seconds
640,000 0.19
1,280,000 0.40
2,560,000 0.80
5,120,000 1.61
10,240,000 3.31
20,480,000 6.76
40,960,000 13.85
81,920,000 27.33

O(1)

O(log n)

O(n)

O(n2)

O(n2 log n)

O(n3)

O(n!)

O(n)

profile imgdavidap posted a year ago

Below are the results of running a program with different size inputs. What is the most likely running time as a function of N

N Seconds
640,000 0.19
1,280,000 0.40
2,560,000 0.80
5,120,000 1.61
10,240,000 3.31
20,480,000 6.76
40,960,000 13.85
81,920,000 27.33

O(1)

O(log n)

O(n)

O(n2)

O(n2 log n)

O(n3)

O(n!)

O(n)

Using big-O notation what is the worst case running time of the following?

def  f7(N) :
    count = 0
    i = 1
    while (i < N) :
        count += i
        i = i * 2
    return count

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(log n)

Using big-O notation what is the worst case running time of the function below?

def f14(a: list,  i,  j) :
    temp = a[i]
    a[i] = a[j]
    a[j] = temp

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(1)

Using big-O notation what is the worst case running time of the following?

def  f2(N) :
    count = 0
    i = 0
    while i < N :
        count += i
        i += 1
    return count

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(n)

Using big-O notation what is the worst case running time of the function f10?

def  f8(a: list,  t) :
    lo = 0
    hi = len(a) - 1
    while (lo <= hi) :
        m = int((lo + hi) / 2)
        if (a[m] == t) :
            return True
        if (t < a[m]) :
            hi = m - 1
        else :
            lo = m + 1
    return False

  
def  f10(a: list) :
    i = 0
    while i < len(a) :
        j = 0
        while j < len(a) :
            if   f8(a, -(a[i] + a[j])) :
                return True
            j += 1
        i += 1
    return False

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n^2 log n)

O(n3)

O(n!)

O(n^2 log n)

Using big-O notation what is the worst case running time of the following?

def  f4() :
    count = 0
    i = 0
    while i < 100 :
        count += i
        i += 1
    return count

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(1)

Using big-O notation what is the worst case running time of the function f9?

def  f8(a: list,  t) :
    lo = 0
    hi = len(a) - 1
    while (lo <= hi) :
        m = int((lo + hi) / 2)
        if (a[m] == t) :
            return True
        if (t < a[m]) :
            hi = m - 1
        else :
            lo = m + 1
    return False
  
def  f9(a: list) :
    for value in a :
        if (f8(a, -value)) :
            return True
    return False

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(n log n)

Using big-O notation what is the worst case running time of the following?

def  f1(a: list,  target) :
    i = 0
    while i < len(a) :
        if a[i] == target :
            return i
        i += 1
    return -1

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(n)

Using big-O notation what is the worst case running time of the function below?

def  f13(a: list) :
    i = 0
    while (i < len(a)) :
        j = 0
        while (j < len(a)) :
            k = 0
            while (k < len(a)) :
                if (a[i] + a[j] + a[k] == 0) :
                    return True
                k += 1
            j += 1
        i += 1
    return False

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n^3)

O(2n)

O(n!)

O(n^3)

Using big-O notation what is the worst case running time of the function below?

def  f15(a: list,  start) :
    result = start
    i = start + 1
    while (i < len(a)) :
        if (a[i] < result) :
            result = a[i]
        i += 1
    return result

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(n)

Using big-O notation what is the worst case running time of the function f12?

def  f11(N) :
    count = 0
    while (N > 1) :
        N //= 2
        count += 1
    return count
  
def  f12(N) :
    sum = 0
    i = 0
    while (i < N) :
        sum +=   f11(N)
        i += 1
    return sum

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

O(n!)

O(n log n)

Recommended Books

Reading books is a great way to learn. Here are some of the books we recommend.