Logo
1

Find dy/dx by implicit differentiation: e^x/y = 9x − y

How to find this?

ex/y = 9x − y

so confused.

ramesrames asked 2 years ago

·

Answers

1

For this we should take derivative at both sides, and solve using chain rule.

U might me used to solving the problem like dexdx\frac{de^x}{dx} = exe^x

For dexydx\frac{de^ \frac xy}{dx}, we need to multiply both numerator and denomenator by d(xy)d (\frac xy). This is chain rule! To match the variable (x/y) we chained d(x/y).

dexydx\frac{de^ \frac xy}{dx} = dexyd(xy)×d(xy)dx\frac{de^ \frac xy}{d (\frac xy)} \times \frac{d (\frac xy)}{dx}

= exy×d(xy)dxe^ \frac xy \times \frac{d (\frac xy)}{dx}

Now, to solve d(xy)dx\frac{d (\frac xy)}{dx}, let's use quotient rule,

= exy×(yxdydxy2)e^ \frac xy \times (\frac{y - x\frac{dy}{dx}}{y^2})

Going back to original question,

exye^ \frac xy = 9x − y

Taking derivative on both sides,

dexydx\frac{de^ \frac xy}{dx} = 9dxdxdydx9\frac{dx}{dx} \, - \, \frac{dy}{dx}

We already solved dexydx\frac{de^ \frac xy}{dx} above. so, let's use it!

or, exy×(yxdydxy2)e^ \frac xy \times (\frac{y - x\frac{dy}{dx}}{y^2}) = 9 - dydx\frac{dy}{dx}

or, exy(yxdydx)e^ \frac xy (y - x\frac{dy}{dx}) = 9y2y2dydx9y^2 \, - \, y^2 \frac{dy}{dx}

or, dydx\frac{dy}{dx} = y.exy9y2x.exyy2\frac{y.e^ \frac xy \, - \, 9y^2}{x.e^ \frac xy \, - \, y^2}

OPTIONAL step. We've given exye^ \frac xy = 9x − y in the question. So let's substitute it!

or, dydx\frac{dy}{dx} = y(9xy)9y2x(9xy)y2\frac{y(9x \, - \, y) \, - \, 9y^2}{x(9x \, - \, y) \, - \, y^2}

so, dydx\frac{dy}{dx} = 9xy10y29x2xyy2\frac{9xy \, - \, 10y^2}{9x^2 \, - \, xy \, - \, y^2}

davidapdavidap answered 2 years ago

Post your answer

Recommended Books

Reading books is a great way to learn. Here are some of the books we recommend.