How to find this?
ex/y = 9x − y
so confused.
rames asked 2 years ago
For this we should take derivative at both sides, and solve using chain rule.
U might me used to solving the problem like dexdx\frac{de^x}{dx}dxdex = exe^xex
For dexydx\frac{de^ \frac xy}{dx}dxdeyx, we need to multiply both numerator and denomenator by d(xy)d (\frac xy)d(yx). This is chain rule! To match the variable (x/y) we chained d(x/y).
dexydx\frac{de^ \frac xy}{dx}dxdeyx = dexyd(xy)×d(xy)dx\frac{de^ \frac xy}{d (\frac xy)} \times \frac{d (\frac xy)}{dx}d(yx)deyx×dxd(yx)
= exy×d(xy)dxe^ \frac xy \times \frac{d (\frac xy)}{dx}eyx×dxd(yx)
Now, to solve d(xy)dx\frac{d (\frac xy)}{dx}dxd(yx), let's use quotient rule,
= exy×(y−xdydxy2)e^ \frac xy \times (\frac{y - x\frac{dy}{dx}}{y^2})eyx×(y2y−xdxdy)
Going back to original question,
exye^ \frac xyeyx = 9x − y
Taking derivative on both sides,
dexydx\frac{de^ \frac xy}{dx}dxdeyx = 9dxdx − dydx9\frac{dx}{dx} \, - \, \frac{dy}{dx}9dxdx−dxdy
We already solved dexydx\frac{de^ \frac xy}{dx}dxdeyx above. so, let's use it!
or, exy×(y−xdydxy2)e^ \frac xy \times (\frac{y - x\frac{dy}{dx}}{y^2})eyx×(y2y−xdxdy) = 9 - dydx\frac{dy}{dx}dxdy
or, exy(y−xdydx)e^ \frac xy (y - x\frac{dy}{dx})eyx(y−xdxdy) = 9y2 − y2dydx9y^2 \, - \, y^2 \frac{dy}{dx}9y2−y2dxdy
or, dydx\frac{dy}{dx}dxdy = y.exy − 9y2x.exy − y2\frac{y.e^ \frac xy \, - \, 9y^2}{x.e^ \frac xy \, - \, y^2}x.eyx−y2y.eyx−9y2
OPTIONAL step. We've given exye^ \frac xyeyx = 9x − y in the question. So let's substitute it!
or, dydx\frac{dy}{dx}dxdy = y(9x − y) − 9y2x(9x − y) − y2\frac{y(9x \, - \, y) \, - \, 9y^2}{x(9x \, - \, y) \, - \, y^2}x(9x−y)−y2y(9x−y)−9y2
so, dydx\frac{dy}{dx}dxdy = 9xy − 10y29x2 − xy − y2\frac{9xy \, - \, 10y^2}{9x^2 \, - \, xy \, - \, y^2}9x2−xy−y29xy−10y2
ShareReportdavidap answered 2 years ago
Reading books is a great way to learn. Here are some of the books we recommend.
Rich Dad Poor Dad: 2...
Think and Grow Rich
Dotcom Secrets: The ...
$100M Offers: How to...
For this we should take derivative at both sides, and solve using chain rule.
U might me used to solving the problem likedxdex = ex
Fordxdeyx , we need to multiply both numerator and denomenator by d(yx) . This is chain rule! To match the variable (x/y) we chained d(x/y).
=eyx×dxd(yx)
Now, to solvedxd(yx) , let's use quotient rule,
=eyx×(y2y−xdxdy)
Going back to original question,
Taking derivative on both sides,
We already solveddxdeyx above. so, let's use it!
or,eyx×(y2y−xdxdy) = 9 - dxdy
or,eyx(y−xdxdy) = 9y2−y2dxdy
or,dxdy = x.eyx−y2y.eyx−9y2
OPTIONAL step. We've giveneyx = 9x − y in the question. So let's substitute it!
or,dxdy = x(9x−y)−y2y(9x−y)−9y2
so,dxdy = 9x2−xy−y29xy−10y2
davidap answered 2 years ago